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ABSTRACT 

Using a known signal added to Gaussian noise, we 

evaluate the performance of several bandpass filters. 

The results are about the same as previous excercises 

carried out on real data.  The gain in threshold for 

reliable detection and gain in S/N ratio is approximately 

8-9 db for a bandpass filter which suppresses both the 

.2 cps and 2 cps peaks but considerably less if a strong 

2 ^ps peak is not suppressed. 



1.     INTRODUCTION 

The design of a bandpass filter is necessarily an art. The 

teleseismic signal is an a-priori unknown narrow band transient 

expected to occur between .7 and 2 cps. Although some ambient noise 

samples are demonstrably stationary Gaussian on a time scale of 

approximately three hours, the noise power can vary markedly between 

day and night, seasonably, and is occasionally subject to extreme 

spatial or temporal variations in the microseism and 2 cps peaks. 

In designing the filter, the following ground rules were 

taken as guides. 

(1) Both a .2 cps arid 2 cps peak are present in the noise 

with the .2 cps peak nominally 25 times tho power of the 2 cps peak. 

As minimum occurs in the signal band at 1.5 cps which is down by 

100 in power from the .2 cps peak. The noise is modeled as a station- 

ary and Gaussian process, in order that performance of filters can 

be evaluated with a test of about 10 samples, otherwise a much larger 

sample population and higher moments must be considered in evaluating 

test data. 

(2) The filter muou have a stable approximate inverse in order 

that most of the signal distortion caused by the filter can be cor- 

rected . 

(3) Since the filter is to be used on each channel prior to 

array processing, the filter should be fast enough that the data 
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processing time is not more than a small fraction (10%) of real time 

per data channel. Neither the filters nor their inverses should require 

more than several multiplications per point. 

2.    GENERATION OF NOISE AND SIGNAL TEST DATA 

The noise is obtained from a pseudo random number generating 

function. FORTRAN 63 RANF(-l). The algorithm has been tested and shown 

statistically to provide a sequence of random uncorrelated numbers. The 

sequence will not repeat until millions of samples have been called. 

The pseudo random numbers are averaged nine times to produce a nearly 

Gaussian input of uncorrelated samples. They are filtered twice in series 

using RECFIL3, a recursive narrow-band filter. The low frequency noise 

component is obtained with the frequency set at to .2 cps and 

Q = fo/Af = 3.5 and with a 12 db/octave high and low frequency cutoff, 

and the high frequency to 2.0 cps. Q - 6. and 6 db/octave. This will 

result approximately in noise with the spectral power characteristics de- 

scribed in the introduction. A plot of the power spectral density of a 

sample of the synthetic noise is shown in Figure 1. 

To generate a signal, the displacement potential is taken as an 

impulse into a system which mo'dels linear creep by a dashpot and spring 

in series. The particle velocity output of the system is the second 

derivative of the reduced displacement potential which can be approximated 

by an impulse far from the source (or a step function close to the source) 

Conceivably, the number of spring dashpot units we pass the signal 

through is proportional to the time spent in propagating through the 

medium. 
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The subroutine used to generate the synthetic signal is called 

SIG.  The number of spring dashpot units is a parameter in the program 

which waa arbitrarily set to 100 for modeling teleseismic signals. 

This resulted in wavelets similar to Ricker wavelets which appeared as 

a suitable model for a teleseismic signal.  With another parameter we 

ae-c  the peak frequency of the wavelet.  Further, to model a shallow 

contained explosion source we add a surface pP reflection with a delay 

of 0.7 seconds.  A high frequency signal is modeled with an apparent 

frequency of 1.8 cps and low frequancy signal with an apparent frequency 

of 1 cps. The tests for evaluating filters were applied to both the 

high and low frequency signals to demonstrate the robustness of the 

results.  The noise, the wavelet, and echo generating subroutines were 

incorporated into a single subroutine called SYNSEI which outputs the 

wavelet, wavelet + echo, noise, and the wavelet + echo + noise.  It is 

only necessary to call SYNSEI to generate a channel of data, and if 

desired, the user can save the wavelet, noise, etc., for future S/N 

computations. 

3.     VISUAL DISPLAY OF TEST DATA 

As many as 14 plots can be legibly displayed on a single page 

using the CAL COMP plotter. A program, TEST, was written which takes 

the plot parameters, data sample rate, and total number of points on 

the record as fixed parameters. Case cards specifying data parameters 

are read until the end of ca' 1 file. A set of 13 different signal 

noise ratios are read in as sequential input to the subroutine SYNSEI. 

After generating data for each prescribed input S/N (standard deviation 
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U^-n-1 P-t e£ tecetae is e.te.nea fet eeC pteceeeet wit. input 

S/N varying from 24 db to -2 db. 

4. H^rnFnn.rr agMtga PARAMETEM 
T«« be used to summarize performance 

The program TEST can also be usea ro 

_—s ena evaiuetiens b. anY aeaitea nu^et e£ iaenticai aUnai. 

aaaea to inaepenaent noise sanies. Po. ex^ie, to equate the ..na- 

pes, fiitet., ten aiMetent noise series -ete tun et eaC ot the 

u   ^  s/N rat^o is then computed in exactly the 
input S/N levels. The output S/N rat-o 

•  . s/N ratio  For the signal, the standard deviation 
same way as the input S/N ratio. 

„es „easutea in a i secona «ponentiaiiv tapetea ti«e winao«. Pot 

noise . one-minute sample «es usea. 

.not^et meesute ot Pet£otmance was to oompete the e^solute maxi- 
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•   oolnt of the signal to the absolute maxrmum on 
front of the starting point of the 

mlnute record. Both the magnitude of the ratio and the 
the whole one-minute recotu 

.   „e listea. It the aetectea absolute mexrmum 
locetion ot the maximum ate listea. 

snocesstul a.tection o£ the .1-1. U the maximum is ioc.tea unaet 
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noise, we score the pick as a failure. The reliable detection threshold 

is defined a , the S/N above which in all ten trials all of the picks 

are successful. The number of successful picks is listed as a function 

of input S/N ratio. At each input S/N ratio above the reliable detection 

threshold is a list of the average output peak ratio.  Estimates of the 

95% confidence interval (the mean + interval is expected to contain 95% 

of the samples) are included with all of the performance measurements. 

5.     DESCRIPTION OF FILTERS 

The program TEST was used to visually display samples of filtered 

data.  After visual examination of a number of different filters, good 

results were observed for a 2-pole phaseless high pass filter set with 

the 3 db point at 1 cps; and also with a second order gapped finite 

difference operator with the first spectral peak at 1.1 cps, and the 

first null at 2.2 cps. The phaseless vtgh pass filter only suppresses 

the .2 cps peak in the noise. The finite difference operator suppresses 

both the .2 cps and 2 cps noise peak. The phaseless highpass filter 

produced no visible distortion of any of the signals including the 

first motion, whereas the finite difference operator produced only slight 

distortion in the 1 cps signal but introduced considerable distortion 

in the 1.8 cps signal as expected due to its proximity to the 2.2 cps 

null of the filter. In accordance with the stated ground rules both 

filters have an approximately stable inverse so that almost all distortion 

introduced by filtering can be removed after multi-channel array process- 

ing of the signal + noise. These two filters were selected for further 

evaluation of performance. 
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A.     Phaseless High Pass Filter 

The Laplace transform of the single pole  low pass filter  is 

P(8) = , and the high pass filter q(s) ■ As an approximation s + a ' »- ^ ^y-'        s + r? 

with less than 10% error up to one-third of the folding frequency, 

s = 1 - z, where z = f 

Taking the z transform of the data a D(z) and the filtered output as F(z), 

with S.R. ■ sampling rate, 

2 Eo F u)[(l +.)-.]-DO, .-^fx -f^s 

Fi - (rh) 3i+ (rhr) Fi-r Fo ■0 

The high pass filter la obtained as H. = D. - F, . 
i   i   i 

The recursive low pass filter involves two multiplication per data point; 

and the high pass filter, one multiplication per point. 

Hi = (ITT) (Hi-i + Di - Di-i) ' «o = 0 

The 2-pole high or low pass filter can be obtained by reversing the 

previous output, filtering again, and reversing the new output. 

Equivalently by transforming the index, 

1+B     (HJ_1 + \-  Hj^) k-N-i+1  i-2 N < 

The recursive phaseless 2-pole high pass filter takes two multiplications 

per daia point.  The inverse of the single pole high pass filter is 

„i " ( 1 + p) Hi " HJ^ ♦ niml 

It  is  obtained with one multiplication per point. For the inverse of the 

two-pole phaseless operator, the one-pole output x;» reversed, filtered 
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again,  and the output  is reversed?  or by transforming the index, 

k-N-i+1 i-2 N 

Dlc-   {   1+  S)  HH-VI* Vl 

B. Gapped Finite Difference Filter 

The gapped difference operator is given as | I,  0,0...,  o,   -kj , 

where k < 1. and the gap is specified by the number of points between 

1 and k. That which is considered here is given by k - 1. The spectrum 

of the operator is given ley 

D(f) - i «iftCS-fe) 
p 

where the frequency of the first peak of the filter is related to the 

number of points in the gap, L . 

T m  §>R-       S.R., the sampling rate 
2 fo 

Note that series application of D(f) can be used to generate higher differ- 

ences m 

D(m)  (fo) - (iV  - ("I)" - D2" (f0) 

where n - 1. 2. 2. ... specifies the 2nd difference. 4th difference, etc. 

Taken as a filter we observe that for N = odd. the sign of the filter is 

reversed. The response of the filter is 

1 ' o'2-' (£> - (-i)n .in2n (Hr) 

The gap, L. is determined by setting the first peak to the desired 
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frequency.  Nulls occur at integer multiples of twice the frequency of 

thv  first peak, and additional peaks occur at frequencies between th s 

null's.  Suppose at frequencies greater than the first null in the 

spectrum for example at f = 2 fo, the signal and noise power are expected 

to attenuate rapidly with increasing frequency.  These high frequency 

peaks will in this case produce negligible effects in the filtered output. 

If, however, we wish to insure attenuation of high frequency peaks in 

the noise spectrum we may apply in series with the filter a low pass 

smoothing operator |l, 0,0, ..., o, +k| where k < 1.  The spectrum of the 

operator is given by S(f). 

S(f) = cos (H£) 
Repeated application of the smoothing operator leads to the operator 

S    (f) = cos {£•*£) 

where, for example, fo may be taken at the folding frequency. 

For k = 1 there are no multiplications in either the smoothing 

or difference operator, so that the above digital operators are exceedingly 

fast. For k = - only an approximate inverse can be obtained. These are, 

in fact, simply deghosting operators.  For k < 1,exact inverses can be 

obtained. The inverses can be designed as recursive filters and require 

n multiplications per point wher n is the number of series applications 

of D(n) or S(n). 

6. RESULTS 

Figure 1 shows the spectrum of the noise used for the tests 
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Figure 2 shows the low frequency signal with apparent frequency of 1 cps. 

The next thirteen channels show the same signal added with different 

gains to different noise samples with the same power spectrum. The input 

S/N ratio in decibels is listed on the left of each channel. Figure 7, 

shows a similar visual display of the signal passed through a high pass 

filter. Since the noise spectrum above 3 cps attenuates at 18 db/octave, 

the response to this filter is not substantially different from a bandpass 

filter with the high frequency cutoff above 3 cps. The low frequency 

cutoff of 12 db/octave is 3 db down at 1 cps. The slight relative ampli- 

fication of the 2 cps peak is approximately 3 db. This could be elimi- 

nated at the cost of two mutliplications per point (or at double the 

compi:tation time) by a 4-pole high pass filter with 3 db point at 0.5 cps 

as for example with the SDL filter. Comparing Figure 2 with Figure 3, 

no significant distortion of signal shape is observed. The filter may 

enhance first motion slightly by reducing the low frequency noise com- 

ponent. Figure 4 displays the gapped second finite difference filter 

which is designed to attenuate both the .2 cps microseism peak and 2 cps 

peak. By comparing Figure 2 with Figure 4 and Figure 5 with Figure 7 

considerable improvement can be observed in apparent detection based on 

peak amplitude or peak-to-peak down to -2 db. Since tha 2 cps peak is 

close to the signal band, its suppression results in considerably more 

signal distortion. The filter could be uspful both as a pre-array 

processor and for simple detection. If undistorted measurement and display 

of the signal is desired after array processing, distortion can be re- 

moved by inverse filtering of the array output. 
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Figures 5, 6 and 7 are the same operations as 2, 3 and 4, respectively, 

except that the test signal is nearly an octave higher in apparent 

frequency. The same observations can be made with the high frequency 

signal as previously pointed out for the low frequency signal indicating 

the robustness of the results; that is, the results do not depend on 

the exact signal waveform or noise spectrum. 

Tables 1, 2 and 3 are summaries of performance p-jtraneters derived 

from ten noise samples added to each signal held at fixed gain or for 

fixed S/N r.aLio.  Each input S/N ratio was the same as that shown on 

the displays of a single sample.  It is listed on the left-hand column 

of each table.  Since we can observe the filtered signal alone and the 

filtered noise alone, we can compute the output S/N ratio for com- 

parison with the input S/N ratio. From tables we observe a gain of 4 

to 5 db for the high pass filter and 8 to 9 db for the gapped second 

difference filter. Another test was designed to gauge the performance 

of the filter based on measurements of the signal plus noise.  The 

detection score lists the number of detection successes out of a 

possible score of ten. A success is indicated if the signal is the 

largest event on a one-minute record. The detection threshold is 

defined as the S/N ratio above which the detection probability is 

indicted as one; where a failure is not observed in fifty adjacent 

one-second time windows. Without filtering, this threshold is ob- 

served on Table 1 at input S/N of 7.5 db; with the high pass filter, 

the threshold drops to an input S/N of 4.5 - 6 db; and with the 

gapped second difference operator, it drops to an input S/N of 0 db. 
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In all the filtered cases, the reliable threshold output S/N ratio 

was given as 8 to 10 db. 

For all S/N ratios above the reliable detection threshold, the 

output peak of the signal was compared to the output peak of 30- 

seconds of noise. The ratio in db is shown in Tables i, 2 and 3. 

The value of this parameter at the reliable detection threshold is 

in all cases from 4 to 5 db.  The difference between the output S/N 

ratio and output peak ratio is 5.5 db to within approximately + 1 db 

for all of the filtered data; and 3 db for the unfiltered data. 

, 7.     CONCLUSIONS 

The gapped second difference filter appears to yield the best 

performance as a simple detector.  The indicated gain in S/N ratio of 

8.5 db and gain in threshold of 7.5 db are compared with the high pass 

filter's performance of 3.5 db and 2.5 db, respectively.  One of the 

keys to optimum selection of band pass filters appears to involve 

the suppression of spectral peaks occurring in the noise spectrum, 

especially the 0.2 cps and 2.0 cps peaks.  How this is best done with 

minimum signal distortion is not resolved here, however, the gapped 

difference operator is the best design yet evaluated. Any distortion 

introduced by the filter can be effectively removed after array 

processing. 

The improvement in threshold S/N reflects the decrease in the 

detection threshold for reliable detection of known events.  Since we 

look for failures along one-minute of data, this implies a false 
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alarm probability threshold of about 0.02.  One-minute of record 

contains approximately 50 cells in which a failure can occur, and 

the threshold can be taken as the .5 probability level for at least 

one failure in the set. From this, assuming that an occurrence is 

equally likely in each cell, the probability of a false alarm of .02 

is easily derived. 

The improvement in S/N ratio is probably a better gauge of 

performance for input to array processors. For any array processor 

to work well, the channels must appear similar under signal, and the 

gain in S/N ratio would appear as a more reasonable measure of this 

attribute than the change in threshold for reliable detection. 

t. 
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